Functional diversity of four glycoside hydrolase family 3 enzymes from the rumen bacterium Prevotella bryantii B14.

نویسندگان

  • Dylan Dodd
  • Shinichi Kiyonari
  • Roderick I Mackie
  • Isaac K O Cann
چکیده

Prevotella bryantii B(1)4 is a member of the phylum Bacteroidetes and contributes to the degradation of hemicellulose in the rumen. The genome of P. bryantii harbors four genes predicted to encode glycoside hydrolase (GH) family 3 (GH3) enzymes. To evaluate whether these genes encode enzymes with redundant biological functions, each gene was cloned and expressed in Escherichia coli. Biochemical analysis of the recombinant proteins revealed that the enzymes exhibit different substrate specificities. One gene encoded a cellodextrinase (CdxA), and three genes encoded beta-xylosidase enzymes (Xyl3A, Xyl3B, and Xyl3C) with different specificities for either para-nitrophenyl (pNP)-linked substrates or substituted xylooligosaccharides. To identify the amino acid residues that contribute to catalysis and substrate specificity within this family of enzymes, the roles of conserved residues (R177, K214, H215, M251, and D286) in Xyl3B were probed by site-directed mutagenesis. Each mutation led to a severely decreased catalytic efficiency without a change in the overall structure of the mutant enzymes. Through amino acid sequence alignments, an amino acid residue (E115) that, when mutated to aspartic acid, resulted in a 14-fold decrease in the k(cat)/K(m) for pNP-beta-d-xylopyranoside (pNPX) with a concurrent 1.1-fold increase in the k(cat)/K(m) for pNP-beta-d-glucopyranoside (pNPG) was identified. Amino acid residue E115 may therefore contribute to the discrimination between beta-xylosides and beta-glucosides. Our results demonstrate that each of the four GH3 enzymes has evolved to perform a specific role in lignopolysaccharide hydrolysis and provide insight into the role of active-site residues in catalysis and substrate specificity for GH3 enzymes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Xylan utilization in human gut commensal bacteria is orchestrated by unique modular organization of polysaccharide-degrading enzymes.

Enzymes that degrade dietary and host-derived glycans represent the most abundant functional activities encoded by genes unique to the human gut microbiome. However, the biochemical activities of a vast majority of the glycan-degrading enzymes are poorly understood. Here, we use transcriptome sequencing to understand the diversity of genes expressed by the human gut bacteria Bacteroides intesti...

متن کامل

Functional phylotyping approach for assessing intraspecific diversity of Ruminococcus albus within the rumen microbiome.

Ruminococcus albus, a cellulolytic bacterium, is a critical member of the rumen community. Ruminococcus albus lacks a classical cellulosome complex, but it possesses a unique family 37 carbohydrate-binding module (CBM37), which is integrated into a variety of carbohydrate-active enzymes. We developed a potential molecular tool for functional phylotyping of the R. albus population in the rumen, ...

متن کامل

Studies on Prevotella nuclease using a system for the controlled expression of cloned genes in P. bryantii TC1-1.

Available tools for genetic analysis in the anaerobic rumen bacterium Prevotella bryantii are limited to only two known systems for gene delivery, and no genes, with the exception of plasmid maintenance and selection genes, have been successfully expressed from plasmids in any species of the genus Prevotella until now. It is shown here that nucB, a newly cloned nuclease gene from P. bryantii, c...

متن کامل

Glycogen biosynthesis via UDP-glucose in the ruminal bacterium Prevotella bryantii B1(4).

Prevotella bryantii is an important amylolytic bacterium in the rumen that produces considerable amounts of glycogen when it is grown on maltose. Radiolabel studies indicated that glucose-1-phosphate was converted to UDP-glucose, and this latter intermediate served as the immediate precursor for glycogen synthesis. High levels of UDP-glucose pyrophosphorylase activities (> 1,492 nmol/min/mg of ...

متن کامل

Functional analyses of multiple lichenin-degrading enzymes from the rumen bacterium Ruminococcus albus 8.

Ruminococcus albus 8 is a fibrolytic ruminal bacterium capable of utilization of various plant cell wall polysaccharides. A bioinformatic analysis of a partial genome sequence of R. albus revealed several putative enzymes likely to hydrolyze glucans, including lichenin, a mixed-linkage polysaccharide of glucose linked together in β-1,3 and β-1,4 glycosidic bonds. In the present study, we demons...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 192 9  شماره 

صفحات  -

تاریخ انتشار 2010